

Experience using the XMOD Hicum Master Toolkit HMT

by
Jörg Berkner
Infineon Technologies, Munich

■ HMT: What is done?

■ HMT: Some parameter extraction problems

■ HMT: Need for more flexibility

■ HMT: What is the right future concept?

What is done?

Laboratory Report

Notes to the XMOD-Toolkit HMT, Version 2.4

Author: Joerg Berkner

Subject: Device - Construction, - Modeling, - Simulation

Index: HICUM Level 2 model parameter extraction

Infineon AG COM PS RF M MT, Tel. 089 234 25326

EMAIL: j.berkner@infineon.com

Date: 19.9.2005, 7.11.2005, 17.11.2005, 2.12.2005

Notes to HMT24_051202.doc

- Since Mai 2005 the HMT Versions 1.2, 2.4 and 2.6 have been tested at Infineon Technologies
- Two feedback reports delivered to XMOD (Ir294 and 309) including proposals to improve usability of HMT
- Many of the proposals are realized by XMOD
- Very fruitful and sufficient collaboration with XMOD, including a visit in Munich and many long phone call discussions
- Many thanks to Bertrand Ardouin for his excellent customer support!

■ HMT: What is done?

■ HMT: Some parameter extraction problems

■ HMT: Need for more flexibility

■ HMT: What is the right future concept?

Problem: Beta temperature modeling using HL2

- HICUM L2 temperature modelling of beta is not sufficient
- Example is simulated using ADS (hpeesofsim 2005A.412 Mar 24 2006) and ICCAP2004
- It looks like the nonideal base current does not depend on temperature

$$I_{JBEI} = IBEIS \cdot \left[exp \left(\frac{U_{B'E'}}{MBEI \cdot U_T} \right) - 1 \right] + IREIS \cdot \left[exp \left(\frac{U_{B'E'}}{MREI \cdot U_T} \right) - 1 \right]$$

$$IxS(T) = IxS(T_0) \left(\frac{T}{T_0}\right)^{\frac{3}{Mx}} \exp\left(\frac{VGB}{Mx \cdot U_T} \left(\frac{T}{T_0} - 1\right) - ALB \cdot \Delta T\right)$$

red = measured

blue = simulated

Problem: Rx temperature parameter extraction

	HICUM L2	HMT / Tradica
Equation	$RE(T) = RE(T_0) \left(\frac{T}{T_0}\right)^{ZETAE} \tag{1}$	$R_E(T) = R_E(T_0)[1 + a_1\Delta T + a_2\Delta T^2]$ (2)
		$R_E(T) \approx R_E(T_0)[1 + a_1 \Delta T]$
Parameter	ZETARE	$a_1 = a_r ke, a_2$
Unit	-	1/K

- In HL2 series resistor temperature modelling is based on an exponential function and the model parameter ZETARx (-)
- However, HMT / TRADICA offers a temperature modelling parameter a_rx (1/K), which belongs to a linear approach
- Why the HL2 model parameter extraction tool uses an equation different from the model HL2 itself?
- The best way to extract the HL2 model parameter ZETARX is an optimization of equ (1) on measured data
- Use of equ (2) makes parameter extraction unnecessary complicated

COM BTS DAT MT AD Infineon Muc HICUM Workshop 12.-13.6.2006 Heilbronn 1.6.2006

©Jörg Berkner

Problem: BE oxide capacitance calculation

$$\overline{C}_{Eox} = \frac{\mathcal{E}_{ox}\mathcal{E}_0}{w_{S,eff}}$$

$$W_{s,eff} = \mathcal{E}_{ox} \left(\frac{W_{ox}}{\mathcal{E}_{ox}} + \frac{W_n}{\mathcal{E}_n} \right)$$

- The BE oxide cap is calculated by TRADICA using an area normalized effective thickness ws,eff (equations from Tradica manual 5.2 p.206, definition of ws appropriate to cross section on p.86)
- However, this approach is only appropriate for a series of two capacitances
- Real spacer structures may be more complicated
- It would be better to use in HMT /Tradica simply a perimeter specific oxide capacitance cbeox_p
- The same is valid for the BC oxide capacitance, it would be better to use an perimeter specific oxide capacitance cbcox_p

Problem: Missing optimization possibility

- Optimization for parameter extraction is basically impossible in HMT. Why?
- For each simulation the absolute model parameters must be first calculated using TRADICA
- These absolute values are not saved in HMT
- That is, for each simulation TRADICA must run (TRADICA is part of the optimization loop)
- This makes an optimization impossible, because the loop is to slow
- Example: RTH extraction using optimization on IB instead of extraction on beta

■ HMT: What is done?

■ HMT: Some parameter extraction problems

■ HMT: Need for more flexibility

■ HMT: What is the right future concept?

Problem: Flexibility (1)

- HMT is based on a certain parameter extraction strategy, that is a certain order of model parameter extraction steps
- However, if the user needs other or additional steps / extraction methods, the only way is to change the HMT code (complicated)

- Infineon Muc Workshop 12.-13.6.2006 Heilbronn
- Example 1: the user needs different or additional plots to appear (fwd gummel y-lin additional to fwd gummel y-log)
- Example 2: the use of Gamma B and Gamm C (which are intended to devide the collector current into perimeter and area part) is mandatory in HMT
- However, in some cases this approach does not work and a normalization to the area only would be sufficient

©Jörg Berkner **COM BTS** DAT MT AD

HICUM

1.6.2006

Problem: Flexibility (2)

wrong

- * (c) Infineon AG 2006, all rights reserved
- * technology: bxxx
- * HICUM/Level2 v2.1 / SPECTRE TRADICA A5.2 subckt n040 (CBES)

QCBESMOD

model MOD bht type = npn tnom = 25.00

+ c10 = 1E-30 qp0 = ...

- Spectre scs file syntax problem appeared with the scs files created
- Current mirror results wrong by factor 2
- The reason was the model call QCBRSMOD
- Another example are the equations inserted for statistical modeling
- Need to define the subcircuit by user

right

```
subckt n040 ( C B E S )
parameters
+ area=1
*Q C B E S MOD
model MOD bht type = npn tnom = 25.00
+ c10 = 1E-30
npl40w105 v2 (C B E S) MOD m=area
ends
```

```
Berkner
 COM BTS
DAT MT AD
Infineon Muc
  HICUM
 Workshop
12.-13.6.2006
 Heilbronn
  1.6.2006
```

```
inline subckt n01b (c b e s)
parameters
+ area=1
+ aeeff=0.00000000000012345
+ cmatch_is=12345e-8/sqrt(2)
+ cmatch bf=12345e-8/sqrt(2)
+is_corr=npn_is_tol*(1+(npn_is_mat)*cmatch_is/sqrt(aeeff*area))
// -----npn-
model n01b npn bjt type=npn
+ is=12345E-194s corr
```

©Jörg

Problem: Flexibility (3)

- In all semiconductor companies the design environment is historically grown
- Certain restrictions and request are exist: name conventions, syntax requests, subcircuit model used or not, subcircuit definitions, user defined equations for global and local model parameter variations
- The modelling engineer must accomplish this, delivering model files for the process design kits (PDKs)
- Conclusion: the a toolkit like HMT must deliver the flexibility, to create the model files as they expected

PDK model file of company 1: Header 1 Filename 1 Subcircuit 1 MC equations 1 PDK model file of company 2: Header 2 Filename 2 Subcircuit 2 MC equations 2 PDK model file of company 3: Header 3 Filename 3 Subcircuit 3 MC equations 3

PDK model file of company 4: Header 4 Filename 4 Subcircuit 4 MC equations 4 PDK model file of company 5: Header 5 Filename 5 Subcircuit 5 MC equations 5

Muc
More flexibility is needed:

for defining plots,

for incorporating user specific extractions steps, for writing user specific PDK model files

■ HMT: What is done?

■ HMT: Some parameter extraction problems

■ HMT: Need for more flexibility

■ HMT: What is the right future concept?

What is the right future concept for scaled model parameter extraction in ICCAP?

Simulators
Spectre
ADS ...
Verilog A

TRADICA

Model

Parameter

Files

for

Design

Kit

OS: Win2000 / WinXP / Solaris/Linux

- In HMT four components have to run together: Simulator, ICCAP+GUI, Tcl/TK, Tradica on three different operating system
- Complicated installation, especially in environments, in which user is not administrator
- Malfunctions are likely, because of continuously changing software versions for all components
- Problems appeared: different licence periods, Tcl scripts not running, model parameter files not running in the design environment

for scaled model parameter extraction in ICCAP?

company 1 company 3 company 5 Simulator: Spectre Simulator: Spectre Simulator: HSPICE ICCAP: 2004 ICCAP: 2006 ICCAP: 2006 Tcl/Tk: 8.x Tcl/Tk: 8.x Tcl/Tk: 7.x OS: Win XP OS: Win 2000 OS: Linux + W2000 company 2 company 4 Simulator: ADS + Spectre Simulator: Saber+Spectre ICCAP: 2006 ICCAP: 2004 Tcl/Tk: 8.x Tcl/Tk: 8.x OS: Solaris OS:Linux

©Jörg Berkner COM BTS DAT MT AD Infineon Muc HICUM Workshop 12.-13.6.2006 Heilbronn 1.6.2006

- For XMOD it is nearly impossibly to foresee the different configurations and environments, which may exist in different companies
- The result: increasing support effort to solve problems for customers
- The way out: minimize the components used for scaling to a) the simulator and b) ICCAP only

The better concept for HMT3.0: whole scaling is realized in ICCAP!